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Introduction: 
Tumor growth, survival and metastasis depend critically on the development of new blood 

vessels (1). Thus, inhibiting the growth of new blood vessels, i.e., antiangiogenesis, should prevent 
growth and metastasis of the primary tumor (1, 2). In addition to the focus on the antiangiogenic 
approaches, vascular targeting, directly attacking the existing neovasculature, is an alternative 
strategy against the tumor blood vessel network. Tubulin binding agents, e.g., combretastatin A-4-
phosphate (CA4P) represent one kind of vascular targeting agent (VTA) (3, 4). Promising 
preclinical studies have shown that such agents selectively cause tumor vascular shutdown and 
subsequently trigger a cascade of tumor cell death in experimental tumors (4, 5). However, 
survived tumors in a thin viable rim usually regrow in spite of induction of massive necrosis. Thus, 
a combination of VTAs with additional conventional therapeutic approaches will be required (6, 
7). To better understand the mode of action, and hence, optimize such combinations, we plan to 
apply in vivo MR imaging approaches to monitoring physiological changes in response to VTA 
administration. Dynamic contrast enhanced (DCE) MRI based on the transport properties of 
gadolinium-DTPA (Gd-DTPA) is the most commonly used imaging approach to study tumor 
vascular perfusion and permeability (8, 9). For combination with radiotherapy, measurement of 
tumor oxygen dynamics will be especially important since hypoxia affects radiation response. By 
applying 19F FREDOM (Fluorocarbon Relaxometry using Echo planar imaging for Dynamic 
Oxygen Mapping) MRI (10), dynamic tumor oxygenation can be monitored following the 
treatment with CA4P. Based on pathophysiological changes monitored by MRI, optimum scheme 
of the combined radiation and CA4P will be designed and experimental treatment will be 
performed on the syngeneic rat breast tumors.   

 
Body:  
The Statement of Work in this project had two major tasks: 
Task 1.     To assess vascular and oxygen dynamics in response to VTA, Months 1-18. 
a. In vivo MRI assessment of vascular and oxygen dynamics in response to VTA, Months 1-18 
b. To study morphological and biological changes of tumor vasculature and hypoxia at cellular 

and molecular levels in response to VTA, Months 1-18. 
Task 1 was completed during the Years 1 and 2. 
 
Task 2.    Experimental tumor therapy, Month 19-36  
Task 2 is ongoing. 

While we have not completed all tasks within the original three year time table, we requested 
and were granted a 1 year no additional cost extension. I believe remaining tasks will be completed 
successfully. 

 
Progress in Task 2: 
a. Learn and become proficient in operating state of the art irradiation system (AccuRay). 

Completed. 
 
b. Design therapeutic protocol based on the MR and histological findings: compare the order 

and timing of the combined therapy (CA4-P 100mg/kg, i.p., irradiation 30 Gy single dose). 
Completed. 
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Radiation dose: While a 30 Gy single dose was proposed originally, we found this dose was well 
over the TCD50 for the proposed 13762NF breast tumor. A 10 Gy single dose was then 
investigated. Results showed that this dose also significantly inhibited tumor growth (Fig. 1). To 
study potential effects by adding CA4P, we decided to further lower the radiation dose to 5 Gy.  
 
CA4P dose: Based on the MRI studies, a dose of 30 mg/kg induced significant reduction in tumor 
vascular perfusion/permeability and tissue pO2 (11). Therefore, we decided to use this dose 
instead of proposed 100 mg/kg to investigate experimental treatment.  

 
Figure 1. Tumor growth was significantly delayed by a single dose of 10 Gy radiation (●) 
compared to control tumors (□). 

 
Order and timing of the combination: Our MRI results from Years 1 and 2 have shown that 
tumor blood perfusion/permeability decreased significantly to ~30% of baseline pretreatment 
level at 2 h after CA4P (30 mg/kg, i.p.) infusion, which recovered fully after 24 h in a thin 
peripheral region, but not the tumor center (11). More importantly, dynamic tumor regional pO2, 
which is well recognized to correlate closely with radiation outcome, was evaluated by 19F MRI. 
Tumor pO2 was found to decline within 60 min, become significantly lower at 90 min, and 
decrease further at 2 h after CA4P infusion. Some regional recovery was seen 24 h later but the 
pO2 was still significantly lower than the pretreatment level. However, oxygen breathing at this 
point modified tumor pO2 significantly, which resulted in essential elimination of tumor hypoxia 
(Fig. 2) (11).  Based on these observations, we decided to administer CA4P (30 mg/kg) on Day 1, 
and 5 Gy radiation on Day 2, while having animals breathe 100% O2 from 20 min before to the 
end of radiation. All the MRI findings have been confirmed by histological and 
immunohistological studies (11). Previous studies by others have demonstrated that 
administration of VTA 1 h post radiation produced better improvements in tumor response than 
other combination schemes. Here, we plan to test our combination approach on the 13762NF 
tumors. 
 
c and d. Evaluate tumor growth delay after the vascular targeting treatmnet and/or irradiation. 
Ongoing 
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Animals bearing subcutaneous 13762NF tumors were grouped as: 1) control without 
treatment (n = 6); 2) CA4P (30 mg/kg, i.p.) alone (n = 6); 3) Radiation alone (5 Gy single dose, n 
= 6); 4) Radiation (5 Gy) + CA4P (1 h post Rx, 30 mg/kg, i.p.); 5) CA4P (30 mg/kg) + radiation 
with O2 (next day, 5 Gy). The animals started to breathe oxygen (100% O2 + 1% isofluorane) 20 
min before receiving a 5 Gy radiation delivered by Accuray system.  
 

 
Figure 2 19F MRI evaluation of tumor pO2 dynamics in response to CA4P. Mean pO2 curves are 
shown for the peripheral (■) and central (○) voxels of the tumor shown in Fig. 2. Significant 
decrease in pO2 was found as early as 30 min after CA4P (30 mg/kg) for both peripheral and 
central tumor. * p < 0.05 from baseline air, + p <0.05 from 24 h air, ‡ p < 0.05 from periphery.  
 

Tumor volume change  (normalized mean ± s.e.) versus time curve was plotted, as shown in 
Fig. 3. The results showed that a single dose (5 Gy) radiation alone inhibited tumor growth 
significantly (p < 0.05). While significant growth delay was achieved during the first 3 days after 
CA4P (30 mg/kg, i.p.), tumors started to regrow from Day 3 and caught up with the Control group 
rapidly on Day 7. The approach with CA4P 1 h post radiation (IR + CA4P) showed no beneficial 
effects over the IR alone by Day 10. However, tumors in this group seemed to stop growing after 
Day 10 while the IR alone tumors started to grow rapidly on Day 10. Unfortunately, longer term of 
growth delay in these tumors could not be achieved because of tumor ulceration. Our approach 
(CA4P + IP + O2), which is designed based on the results of tumor pO2 dynamics monitored by 
MRI, showed significantly slower tumor growth rate from Day 3 than other groups (p < 0.05).  

 
In addition to the 13762NF subline, we proposed to perform studies on two other sublines of 

13762:  PAM-CTX and MTLn2. However, we could not obtain these two sublines. Instead, we 
decided to use human breast MDA-MB-231 tumor. The MDA-MB-231 cells were transfected 
stably with firefly luciferase. Extensive MRI and bioluminescent imaging (BLI) studies were 
performed to monitor physiological change in response to CA4P. In good agreement with the 
13762NF line, DCE MRI revealed significant reduction in tumor vascular perfusion/permeability 
(Fig. 4). Comparable results were obtained by cheaper and high throughput BLI approach (Fig. 5). 
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This Figure will be sent in later  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Growth delay versus time curve for the 13762NF tumors. Significant growth inhibition 
was observed in the CA4P + IR + O2 treated group, compared to other treatment approaches (* p 
< 0.05). 

 
Figure 4. DCE MRI monitoring of tumor response to CA4P. Top row: Conventional T1- and T2-
weighted, and T1- weighted contrast enhanced MR images of a nude mouse with MDA-MB-231-
luc mammary tumor. Bottom row: Dynamic contrast enhance MRI was performed in the mouse 
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before (left) and 2 h after (right) CA4P (120 mg/kg) i.p. injection. A normalized contrast enhanced 
image at 30 s after a bolus injection of Gd-DTPA-BMA acquired before and 2 h after treatment, 
respectively is superimposed on the T1-weighted image. Significantly decreased signal 
enhancement, compared to pretreatment, was observed 2 h after i.p. injection of CA4P.  

Figure 5. BLI monitoring of tumor response to CA4P. A representative MDA-MB231-luc tumor 
was monitored sequentially following saline (0.15 ml) or CA4P (120 mg/kg) i.p. infusion. Each 
image was acquired 4 min after s.c. luciferin injection. In contrast to saline treatment, CA4P 
caused a significant decrease in BLI signal intensity 2 h after treatment, which remained lower 24 
h later. 

 

Pre                      Saline 2 h                     Saline 24 h

CA4P 2 h                  CA4P 24 h 10

8

6

4

2

0

Photons/sec/cm2 (x 103)

Pre                      Saline 2 h                     Saline 24 h

CA4P 2 h                  CA4P 24 h 10

8

6

4

2

0

10

8

6

4

2

0

Photons/sec/cm2 (x 103)

Anti-CD31 endothelial cells               Perfusion marker Hochest 33342                           Overlapping

Control

CA4P
2hr

Anti-CD31 endothelial cells               Perfusion marker Hochest 33342                           Overlapping

Control

CA4P
2hr



 9

Figure 6 Immunohistochemical study of MDA-MB-231 tumor vascular response to CA4P. 
Perfusion marker Hoechst staining pre and 2 h post CA4P (120mg/kg). Vascular endothelium of 
the same field was immunostained by anti-CD31 (red). A good match between Hoechst and anti-
CD31 stained vascular endothelium was found in the pretreated tumor. Two hours after treatment, 
significant reduction in perfused vessels was detected, in line with the significant reduction in BLI 
signals. 
 
Key Research Accomplishments 

 
• Experimental therapy  
 

Based on in vivo study of tumor physiological dynamics evaluated by MRI, we designed a 
treatment scheme to administer CA4P 24 h before a single dose radiation plus oxygen inhalation. 
The results showed significantly slower tumor growth in this treatment group than those in other 
groups.  

 

• Assessment of tumor perfusion dynamics in the human breast tumors in response to the 
vascular targeting agent, Combretastatin A4 phosphate, by in vivo MR approaches 

 
Similar to our previous data of rat 13762NF tumor, DCE MRI showed significant reduction in 

perfusion and permeability of human MDA-MB-231 breast tumors 2 h after administration of 
CA4P.   
   
• High throughput bioluminescent imaging evaluation of tumor perfusion in response to 

CA4P  
 
Significant reduction in signal intensity after infusion of CA4P correlates well with decrease in 

tumor perfusion monitored by MRI. 
 

• Correlation of MR findings with histological studies 
 
Consistent with MRI and BLI findings, histological study of tumor perfusion using Hoechst dye 

33342 showed a significant reduction in perfused vessels at 2hr after CA4P, which recovered 24 h 
later. 
 

Reportable Outcomes 

Years 1 and 2: Two peer-reviewed papers and five published conference proceedings. 
 
Year 3:  
 
Abstracts (Published Conference Proceedings): 
Zhao, D., Richer, E., Liu, Li., Ya Ren, Slavine, N., Shay, J. W., Antich, P. P., Mason, R. P. In vivo 
monitoring of antivascular effects of combretastatin A4 phosphate in a breast cancer xenograft 
model. 97th AACR, Washington, DC, Apr 2006. 
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Manuscripts in preparation: 
1. Zhao, D., Jiang, L., Hahn, E.W., and Mason, R.P. Evaluation of breast tumor microcirculation 
and oxygenation using a combination of BOLD, DCE and 19F MRI. Magn. Reson. Med.  

2. Zhao, D., Harper, A., Richer, E., Liu, Li., Slavine, N., Shay, J. W., Antich, P. P., Mason, R. P. 
Novel application of bioluminescent imaging: Interrogating acute effects of the vascular 
targeting agent combretastatin. Cancer Res. 

 

Conclusion:  
  Based on the data of in vivo tumor perfusion and oxygenation dynamics in response to the 

vascular targeting agent, combretastatin A-4-phosphate (CA4P) evaluated by MRI, we 
successfully designed a scheme to combine the radiation treatment and CA4P to treat breast 
tumors. This is the major goal of the proposed project. Moreover, the pathophysiological 
information will be especially useful for designing a complicated scheme, which usually 
involves combination of fractionated radiation and multiple dose of systemic chemotherapy at 
clinical settings. I am confident that the proposed project will be fulfilled by the next term.  
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In vivo monitoring of antivascular effects of combretastatin A4 phosphate in a breast cancer xenograft model

 

 
 
     

1005   In vivo monitoring of antivascular effects of combretastatin A4 phosphate in a breast cancer 
xenograft model

Dawen Zhao, Edmond Richer, Li Liu, Ya Ren, Nikolai Slavine, Jerry W. Shay, Peter P. Antich, Ralph P. Mason. 
UT Southwestern Medical Center, Dallas, TX.

The vascular targeting agent, combretastatin A-4-phosphate (CA4P) causes tumor vascular shutdown inducing 
massive cell death. We have recently shown acute hypoxiation within 90 mins following CA4P administration to 
rats bearing syngeneic breast 13762NF tumors using MRI. We have now applied MRI and bioluminescent imaging 
(BLI) to probe the acute effects of CA4P on human breast MDA-MB-231 tumors. 
231 cells were infected with a lentivirus expressing a luciferase reporter and highly expressing clones isolated. 106 
cells were implanted in the flank of nude mice and allowed to grow to ~ 6 mm diameter. For BLI studies, mice 
were anesthetized (isoflurane/O2) and a solution of D-luciferin (450 mg/kg) was administered s.c. in the neck 

region and light images acquired immediately using one camera of our Light Emission Tomography System 
(LETS). Serial images (30 s each) were acquired over a period of 20 - 30 mins and the light intensity-time curves 
evaluated. Saline or CA4P in saline (120 mg/kg; OXiGENE, Inc. Waltham, MA) were injected i.p. immediately 
after baseline BLI and then 2 h and 24 h later the BLI time course was repeated. We also undertook 3D imaging by 
acquiring multiple images simultaneously using 3 cameras arranged in a circular gantry around the mouse. MRI 
studies were performed using a 4.7 T Varian Inova imaging system. The transverse relaxation rate R2

* was 

measured using multigradient echo sequence before and 2 h after i.p. CA4P (120 mg/kg). Dynamic contrast 
enhanced (DCE) MRI based on i.v. bolus injection of Gd-DTPA-BMA through a tail vein catheter was also 
acquired before and 2 h after CA4P, respectively. 
Control tumors showed intense light emission peaking within 8 mins and generally decreasing to about 50-70% 
after 20 mins. By contrast, CA4P led to a significantly lower light emission (peak ~ 2 to 10 times lower) and 
delayed peak emission when animals were imaged after 2 h. 24 h later signal remained considerably decreased. 
Traditional BLI provides a planar image only, but tumors are 3D and known to exhibit heterogeneity, particularly, 
after vascular targeting agents. LETS successfully provides a 3D representation of the tumors. In good agreement 
with the BLI data, DCE MRI revealed a ~70% decrease in perfusion/permeability of tumors 2 h after CA4P (p < 
0.001), while little change was observed in perfusion of the femoral artery. R2

* measurement showed a significant 

increase in R2
* values 2 h after CA4P treatment (mean of 2 h = 131 s-1 vs pre = 113 s-1, p < 0.01), which may 

suggest an elevated deoxyhemoglobin from hemorrhagic thrombosis. 
Both BLI and MRI enabled accurate imaging of tumor vascular shutdown after CA4P treatment. However, BLI is 
much cheaper and offers a high throughput method for evaluating novel drugs and drug combinations and 
scheduling. 
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